112 6 Adaptive Fuzzy Control -

(4) Plot program: chap6_dplot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,ydl(:,1), =", t,y(:,1),'b');

xlabel ('time(s) ') ivlabel ('Angle tracking of first 1ink’)y
subplot (212) ;

plot(t,yd2(:,1), 'r',t,y(:,3),'b'); .
xlabel('time(s)');ylabel('Angle tracking of second link');

figure(2) ;

subplot (211);

plot(t,ydl(:,Z),'r',t,y(:,2),'b');
xlabel('time(s)');ylabel('Angle speed tracking of first link')
subplot (212) :

plot(t,de(:,z),‘r‘,t,y(:,4),'b');

xlabel ('time(s) ') ;ylabel ('Angle speed tracking of second link")

7

H

figure (3) ;

subplot (211);

plot(t,y(:,5),'r", t,u{:,3),'b);
xlabel ('time(s)');ylabel ('F and Fa' Y
subplot (212);

plot(t,y(:,6),'r', t,u(:,4), 'b');
xlabel ('time(s) ') ;ylabel {'F and Fc');

figure (4) ;

subplot (211) ;

plot{t,u(:,1), 'r');

xlabel('time({s)');ylabel (' Control input of Linkl"');
subplot (212) ;

plot(t,u(:,2),'r");

xlabel ('time(s) ') ;ylabel (*Control input of Link2');

References
1. LX.Wang, A Course in Fuzzy Systems and Control, (Prentice-Hall International, Inc., 1996)
2. LX. Wang, Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2),

146-155 (1993)
. P.A. Toannou, J. Sun, Robust Adaptive Control, (PTR Prentice-Hall, 1996), pp. 75-76

4. B.K. Yoo, W.C. Ham, Adaptive control of robot manipulator using fuzzy compensator. JEEE
Trans. Fuzzy Syst. 8(2), 186-199 (2000)

W

Chapter 7
Neural Networks

7.1 Introduction

Neural networks are networks of nerve cells (neurons) in the brain. The human
brain has billions of individual neurons and trillions of interconnections. Neurons
are continuously processing and transmitting information to one another.

In 1909, Cajal found that the brain consists of a large number of highly con- -
nected neurons which apparently can send very simple excitatory and inhibitory
messages to each other and can update their excitations on the basis of these simple
messages [1]. A neuron has three major regions: the cell body, the axon (send out
messages), and the dendrites (receive messages). The cell body provides the support
functions, the structure of the cell. The axon is a branching fiber which carries
signals away from the neurons. The ‘dendrites consist of more branching fibers
which receive signals from other nerve cells.

The historical reviews of neural networks are as follows:

(1) In 1943, McCulloch and Pitts proposed first mathematical model of the neurons
and showed how neuron-like networks could be computed.

(2) The first set of ideas of learning in neural networks was contained in Hebb’s
book entitled The Organization of Behaviour in 1949.

(3) In 1951, Edmonds and Minsky built their learning machine using Hebb’s idea.

(4) The real beginning of a meaningful neuron-like network learning can be traced
to the work of Rosenblatt in 1962. Rosenblatt invented a class of simple
neuron-like learning networks which is called perceptron neural network.

(5) In a breakthrough paper published in 1982, Hopfield introduced a neural net-
work architecture which is called Hopfield network. This NN can be used to
solve optimization problems such as the traveling salesman problem.

(6) An important NN which has been widely used in NN is the back-error prop-
agation or backpropagation (BP). BP NN was first presented in 1974 by
Werbos and then was independently reinvented in 1986 by Rumelhart et al. [2].

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2018 113
J. Liu, Intelligent Control Design and MATLAB Simulation,
httos://doi.ore/10.1007/97R8-08 11059637 7

114 7 Neural Networks

Their book, Parallel Distributed Processing, introduced a broad perspective of
the neural network approaches.

(7) RBF neural networks were addressed in 1988 [3], which have recently drawn
much attention due to their good generalization ability and a simple network
structure that avoids unnecessary and lengthy calculation as compared to the
multilayer feed-forward network (MFN). Past research of universal approxi-
mation theorems on RBF have shown that any nonlinear function over a
compact set with arbitrary accuracy can be approximated by RBF neural net-
work [4]. There have been significant research efforts on RBF neural control for
nonlinear systems.

RBF neural network has three layers: the input layer, the hidden layer, and the
output layer. Neurons at the hidden layer are activated by a radial basis function.
The hidden layer consists of an array of computing units called hidden nodes. Each

hidden node contains a center ¢ vector that is a parameter vector of the same

dimension as the input vector x, the Euclidean distance between the center and the
network input vector x is defined by ”x(t) - ¢;(2) ”

7.2 Single Neural Network

From Fig. 7.1, the algorithm of single neural network can be described as

Net; = Zwijxj+si — 6; (7.1)
7

u; = f(Net;) (7.2)

i = g(u;) = h(Net;) - (7.3)

where g(u;) = u;, y; = f(Net,).
Fig. 7.1 Single NN model X

1 Y,
K
w.
2
Xy 2y —_—

w

n

L

7.2 Single Neural Network 115
Nonlinearity characteristic function f (Net;) can be divided as three kinds as
follows:

(1) Threshold value

1 Net;>0
f(Nez;) = { 0 Net<0 (7.4)
The threshold function is shown in Fig. 7.2.
(2) Linear function

0 Net; < Nety
f(Neti) = ¢ kNet; Nety < Net; < Net; (7.5)
Smax Net; > Net,

Choose Netyy = 30, Net; = 70, Jmax = 5.0, the linearity function is shown in
Fig. 7.3.
(3) Nonlinear function

Sigmoid function and Gaussian function are often used in neural network.
Sigmoid type is expressed as

FVer) = —L | (7.6)

14+e T

Choose T = 1.0, the sigmoid function is shown in Fig. 7.4,

Fig. 7.2 Threshold function 1

0.9

0.8

0.7

0.6

0.5

f(Neti)

04

03

0.2

0.1

116 7 Neural Networks

Fig. 7.3 Linearity function 5 . :

4.5

3.5}

25¢+

f(Neti)

151

05

" Neti -

Fig. 7.4 Sigmoid function 1

0.9

07 ,
06 /
05 : /
0.4

0.3 /
02 /

0.1

f(Neti)

Neti

7.3 BP Neural Network Design and Simulation

The backpropagation (BP) neural network is a multilayered neural network. Thus,
the BP algorithm employs three or more layers of processing unit (neurons).

7.3.1 BP Network Structure

Figure 7.5 shows a structure of a typical three-layered network for the BP algo-
rithm. The leftmost layer of units is the input layer to which the input data is
supplied. The layer after it is the hidden layer where the processing units are

80 80 100

7.3 BP Neural Network Design and Simulation 117

Fig. 7.5 BP NN structure

input hidden output

interconnected to the layers before and after it. The rightmost layer is the output
layer. The layers shown in Fig. 7.5 are fully interconnected, which means that each
processing unit is connected to every unit in the previous layer and in the suc-
ceeding layer. However, units are not connected to other units in the same layer.

7.3.2 Approximation of BP Neural Network

BP neural network scheme for approximation is shown in Fig. 7.6.
BP neural network structure for approximation is shown in Fig. 7.7.
Classical BP neural network algorithm is described as follows:

(1) Peed-forward calculation

Input of hidden layer is

Xj = Zwijxi (77)

Fig. 7.6 BP approximation u(k) " y (k)
scheme @_{*
>+

Y (k)

118 7 Neural Networks

Fig. 7.7 BP neural network
structure for approximation

7, k)

Output of hidden layer is

1
X =fly) = gy (7.8)
then
0%,
L =¥l -x
5 x(1 - x)
Output of output layer is
Yolk) =Y wie, (7.9)
j
Then, the approximation error is
e(k) = y(k) — ya(k)
Error index function is designed as
1 .
E=§e(k) (7.10)

(2) Learning algorithm of BP

According to the steepest descent (gradient) method, the learning of weight
value wj, is

7.3 BP Neural Network Design and Simulation 119
The weight value at time k41 is
Wio(k + 1) = wjo(k) + Awj,

The learning of weight value wy is

i - Or Oy By O % Yy
where the chain rule is used, 6wu_5§j’ By ey = Wio 35 Hi = Wio - (1 — X)) - xi.

The weight value at time k41 is

Considering the effect of previous weight value change, the algorithm of weight
value is

Wiolk +1) = wjo (k) + Awjo -+ a(wjo (k) — wjo(k — 1)) (7.11)

wii(t+1) = wy(2) + Awy + a(wy(f) — wy(t — 1)) (7.12)

where 7 is learning rate, « is momentum factor, # € [0,1], « € [0, 1].
By using BP neural network approximation, Jacobian value can be calculated as
follows:

ay(k) ~ 6y0(k) — 6y0(k) o) Ox; .) ’ .
Ou(k) ~ du(k) 0%, % 6_xj % B_X(jﬁ -]Z.w”xj(l _xf>w1’ (7.13)

7.3.3 Simulation Example

The plant is as follows

3, yk=1)
(k) = (k) + LE= 2
Input signal is chosen as u(k) = 0.5sin(6nz), let RBF neural network input
vector as x = [u(k) y(k)], NN structure is chosen as 2-6-1, the initial value of W,
W is chosen as random value in [—1 +1], # = 0.50, a« = 0.05.
The program is chap7_1.m, and the results are shown from Figs. 7.8, 7.9, and
7.10.

120

Fig. 7.8 BP approximation

[
>
R~
&
>
Fig. 7.9 BP approximation
error
£
L4
Fig. 7.10 Jacobian value
identification
=
=)

Neural Networks

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3

-0.35

0.1

0.2

0.3

0.4

0.5
times

0.8

0.7

7.3 BP Neural Network Design and Simulation

Simulation program: chap7_1.m

%BP approximation
clear all;
close all;

xite=0.50;
alfa=0.05;

wjo=rands (6,1) ;

wio_l=wjo;wio_2=wjo_1;
wij=rands(2,6);
wij_l=wij;wij_2=wij;
dwij=0*wij;

x=[{0,0]";

u_1=0;
y_1=0;

I=[0,0,0,0,0,0]";
Iout=[{0,0,0,0,0,0]";
FI={0,0,0,0,0,0]";

ts=0.001;
for k=1:1:1000

time (k)=k*ts;
u(k)=0.50*sin (3*2*pi*k*ts) ;
y(k)=u_173+y 1/ (1+y_1-2);

x(1)=u(k);
x(2)=y(k);
for j=1:1:6

I(3)=x"*wij(:,7);
Iout (j)=1/(l+exp(~I(3)));
end

yo (k)=wjo'*Iout;

e(k)=y(k)-yo(k); % Error calculation

wjo=wjo_1+ (xite*é (k))*Iout+alfa* (wjo_l-wijo_2)

% Output of NNI networks

121

122 7 Neural Networks

for j=1:1:6
FI(j)=exp(-I(3))/(l+exp(~-T(3)))"2;
end

for i=1:1:2
for j=1:1:6
Awij (i, J)=e (k) *xite*FI (1) *wio(F) *x(1);
end
End

wij=wij_l+dwij+alfa* (wij_l-wij_2):

FEELELILEE55%TacobianStE L ELEELILELS
yu=0;
for 4=1:1:6
yusyu+wjo(J) *wij (1, 3) *FI(5);
end
dyu (k) =yu;

wij_2=wij_1;wij_l=wij;
wjo_2=wjo_l;wjo_l=wjo;

u l=u(k);

y. =y (k) ;

end

figure (1) ;

plot(time,y, 'r',time,vo, 'b'};
xlabel ('times');ylabel('y andyo');
figure (2) ;

plot(time,y-yo,'r');
xlabel('times');ylabel('error');
figure(3) ;

plot{time, dyu);

xlabel ('times');ylabel('dyu');

7.4 RBF Neural Network Design and Simulation

The radial basis function (RBF) neural network is a multilayered neural network.
Like BP neural network structure, RBF algorithm also employs three layers of
processing unit (neurons).

The difference between BP and RBF is that RBF have only output layer, and
activation function is Gaussian function instead of S function in hidden layer, which
will simplify the algorithm and decrease computational burden.

7.4 RBF Neural Network Design and Simulation 123

7.4.1 RBF Algorithm

The structure of a typical three-layer RBF neural network is shown as Fig. 7.11.

In RBF neural network, x = [x;]” is input vector. Assuming there are mth neural
nets, and radial basis function vector in hidden layer of RBF is k = [k]", h; is
Gaussian function value for neural net j in hidden layer, and

B = ex _M 7.14
j

ci1 ° Cim
wherec =[cj] = | : ... ! | represents the coordinate value of center point
Cnl *°° Cnm
of the Gaussian function of neural net j for the ith input, i=1,2,..,n,
j=1,2,...,m. For the vector b = [by,...,by|", b; represents the width value of

Gaussian function for neural net j.
The weight value of RBF is

W=[W,. ., Wn]" (7.15)
The output of RBF neural network is

Y(O) = wTh = wihi +wahy + -+ + Wb (7.16)

7.4.2 RBF Design Example with MATLAB Simulation

7.4.2.1 For Structure 1-5-1 RBF Neural Network

Consider a structure 1-5-1 RBF neural network, we have one input as x = x;,
and b=[b by by by bs]', c=[cu cn c3 c4 as), h=
[h1 hy hs hs hs]T, w= [W1 Wy Wi Wy WS}, and y(z‘) =wlh =
wrhy +wahy -+ waha + wahy + wshs.

Choose the input as sin #, the output of RBF is shown in Fig. 7.12, the output of
hidden neural net is shown in Fig. 7.13.

The Simulink program of this example is chap7_2sim.mdl, and MATLAB
programs of the example are given in the Appendix.

124

Fig. 7.11 RBF neural
network structure

Fig. 7.12 Output of RBF

Fig. 7.13 Output of hidden
neural net

2.5

0.5

7 Neural Networks

-08 -06 -04 -0.2

7.4 RBF Neural Network Design and Simulation

Simulation programs:

(1) Simulink main program: chap7_2sim.mdl

4

P chap7?_2rbf f——- P!
¥V, Pl
Sine Wave S-Function
30— ot
Clock To Workspace

(2) S function of RBF: chap7_2rbf.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]l=mdlInitializeSizes;
case 3,

sys=mdlOutputs (t,x,u);
case {2,4,9}

sys=[];
otherwise

error (['Unhandled flag = ', num2str (flag)]);
end
function [sys,x0,str,ts)=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =7;
sizes.NumInputs =1;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;

Sys = simsizes (sizes);

x0 = [1;
str=[];
ts = [1;

function sys=mdlOutputs (t,x,u)
x=u(l); %$Input Layer

Position1

125

126

%$i=1

%3=1,2,3.4,5

Fk=1

e=[-0.5-0.2500.250.5]; %cij
b=[0.20.20.20.20.21"; $%b3

W=ones(5,1); %Wj

h=zeros (5,1); %hj

for §=1:1:5
h(j)=exp(-norm(x-c(:,3))"2/(2*b(3)*b(3)))
end

y=W'*h; %Output Layer

sys (1) =y;

sys(2)=x;

sys (3)=h(1);
sys (4)=h(2);
sys(5)=h(3);
sys(6)=h(4);
sys (7)=h(5);

(3) Plot program: chap7_2plot.m

close all;
Fy=y(:,1);
% x=y(:,2);
$hl=y(:,3);
$h2=y(:,4);
Fh3=y(:,5);
% hd=y(:,6);
% hB=y(:,7);
figure (1) ;

plot(t,y(:,1),'k", 'linewidth',2);
xlabel('time(s) ') ;ylabel ('y');

figure(2);

plot(y(:,2),y(:,3),'k', 'linewidth', 2);
‘xlabel('x');ylabel ('hj');

hold on;

plot(y(:,2),y(:,4),'k', 'linewidth',2);
hold on;

plot(y(:,2),vy(:,5),'k', 'linewidth',2);
hold on;

7 Neural Networks

; %Hidden Layer

‘

7.4 RBF Neural Network Design and Simulation 127

plot(y(:,2),y(:,6),'k", 'linewidth',2);
hold on;
plot(y(:,2),v(:,7), k", 'linewidth',2);

7.4.2.2 For Structure 2-5-1 RBF Neural Network

Consider a structure 2-5-1 RBF neural network, we have x= [xl,xz]T,
_ T __ e €12 c13 Cig Cy5 .
b=[br b2 b3 be bs], €= [021 €2 €3 Cu O] b=
(m hy hs ke hs]', w=[w wo ws ws ws ", and y(t) =wTh =
wihy +wahy +wshy +wahy +wshs.
Two inputs are chosen as sin¢, the output of RBF is shown in Fig. 7.14, and the
output of hidden neural net is shown in Figs. 7.15 and 7.16.

Simulation programs:

(1) Simulink main program: chap7_3sim.mdi

—P
\ Mux|—pl chap7_3mf |—B{ vy
Sine Wa L > _
" S-Function Position1
3 P
Clock To Workspace

(2) S function of RBF: chap7_3rbf.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u);
case {2,4,9)}
sys=[1;

128 7 Neural Networks 7.4 RBF Neural Network Design and Simulation 129

Fig. 7.14 Output of RBF 1.5 T T T T T otherwise
" P ﬂ p m n q ﬂ F\ ﬂ] error(['Unhandled flag = ', num2str (flag)]) ;
’ ! end
function [sys,x0,str,ts]=mdlInitializeSizes
ir E sizes = simsizes; -

sizes.NumContStates = 0;

> sizes.NumDiscStates = 0;
sizes.NumQutputs

=8;
0.5} E sizes.NumInputs =2;
! sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;

U U U U U U U U U ~ sys = simsizes (sizes);
0 < . ;) x0 = [];

10 15 20 25 30
time(s)

str=[];
ts = (];
function sys=mdlOutputs (t,x,u)

Fig. 715 Output of hidden ! ' x1=u(l); %Input Layer
neural net for first input 09f x2=u(2) ;
0.8 x=[x1 x2]";
ery $i=2
s %$9=1,2,3,4,5
= 05 Fk=1
04b c=[-0.5~-0.2500.250.5;
~0.5-0.2500.250.5]; %cij
osr b=[0.20.20.20.20.21"; %bj
02f
o1l W=ones (5,1); %Wj
h=zeros(5,1); %hj
R a—y, 04 "2 for j=1:1:5
h(j)=exp(-norm(x-c(:,3))"*2/(2*b(3)*b(j))); %$Hidden Layer
end
Fig. 7.16 Output of hidden 1 yout=W'*h; %Output Layer
neural net for second input ook
X sys(1)=yout;
0.8+ sys (2)=x1;
o7t sys (3)=x2;
05k sys(4)=h(1);
sys(5)=h(2);
= 05} sys(6)=h(3);
0.4k sys(7)=h(4});
0.3 sys(8)=h(5);
0.2}
01t
0

130

(3) Plot program: chap7_3plot.m

close all;
$y=y(:,1);
% xl=y(:,2);
% x2=y(:,3);
% hl=y(:,4);
% h2=y(:,5);
% h3=y(:,6);
% hd=y(:,7);
% hb=y(:,8);
figure (1) ;

plot(t,y(:,1),'k", 'linewidth’, 2);
xlabel('time(s)');ylabel('y');

figure (2) ;
plOt(y(:lz)rY(:/4)l 'k,

'‘linewidth',2);

xlabel('x1l');ylabel('hj');

hold on;
plot{y(:.2),y(:,5), k',
hold on;
plot(y(:,2),y(:,6),'k',
hold on;
plot(y(:,2),y(:,7), k",
hold on; ,
plot(y(:,2),v(:,8),'k",

figure (3) ;
plot(y(:,3),y(:,4),'k",
xlabel ('x2') ;ylabel ('hj
hold on;
plot(y(:,3),y¥(:,5), k",
hold on;
plot(y(:,3),y(:,6),'k",
hold on;
plot(y(:,3),y(:,7), k",
hold on;
plot(y(:,3),y(:,8),'k",

'linewidth',2);

'linewidth',2);

'linewidth',2);

'linewidth',2);

'linewidth',2);
')

'linewidth',2);

‘linewidth',2);

'linewidth',2);

'linewidth',2);

7 Neural Networks

7.5 RBF Neural Network Approximation Based on Gradient ... 131

7.5 RBF Neural Network Approximation Based
on Gradient Descent Method

7.5.1 RBF Neural Network Approximation

We use RBF neural network to approximate a plant, the structure is shown in
Fig. 7.17.

In RBF neural network, x = [x; x2 ... x,]T is the input vector, and &; is
Gaussian function for neural net j, then
= -l .
hj=CXp —T ,j=1,2,...,m (717)
J
where ¢; = [Cj], cen cjn] is the center vector of neural net j.

The width vector of Gaussian function is
b=1[bi,...bm"

where b; > 0 represents the width value of Gaussian function for neural net ;.
The weight value is

w= [wla-'-ywm]T (718)
The output of RBF is
Ym(t) = wihy +wahy + - + Wl (7.19)

The performance index function of RBF is

E() = 2 (/(2) ~ () (7.20)

Fig. 7.17 RBF neural plant S
network approximation u (k) y{k)

Y (F)

132 7 Neural Networks

According to gradient descent method, the parameters can be updated as follows:

Awy(e) = -ngf; = 1) = ()
w;(t) = wi(t — 1) + Aw;(8) + ou(wi(t — 1) — wy(t — 2)) (7.21)
Aby = -.ng_,fj.: (5(1) -yma))wfhj“"—;?fi’-‘— (7.22)
by(t) = b(t — 1) + Abj+ a(b;(t — 1) ——‘bj(t -2)) (7.23)
Acj = —n g—E = () =m0y (7.24)
Cji(t) = Cﬁ(t - 1) +ACji —l—Ot(Cji(t — 1) - Cji(t — 2)) (7.25)

where 1 € (0,1) is the learning rate, o € (0, 1) is momentum factor.

In RBF neural network approximation, the parameters of ¢; and b; must be
chosen according to the scope of the input value. If the parameters ¢; and b; are
chosen inappropriately, Gaussian function will not be effectively mapped, and RBF
network will be invalid. The gradient descent method is an effective method to
adjust ¢; and b; in RBF neural network approximation.

If the initial ¢; and b are set in the effective range of inputs of RBF, we can only
update weight value with fixed ¢; and b.

7.5.2 Simulation Example

First example: only update w

Using RBF neural network to approximate the following discrete plant

133
Gls) = 52 4255
Consider a structure 2-5-1 RBF neural network, we choose inputs as
x(1) = u(t), x(2) = y(¢), and set o = 0.05, = 0.5. The initial weight value is
chosen as random value between 0 and 1.
Choose the input as u(t) = sin ¢, consider the range of the first input x(1) is [0, 1],
the range of the second input x(2) is about [0, 10}, we choose the initial parameters of

-1 -05 0 05 117

Gaussian function as ¢; = 10 -5 0 5 10 ,bi=135,j=1,2,3,4,5.

7.5 RBF Neural Network Approximation Based on Gradient ... 133

12

ideal signal
............ signal approximation

y and ym
(=]

10

Fig. 7.18 RBF neural network approximation

In the simulation, we only update w with fixed ¢; and b in RBF neural network
approximation, the results are shown in Fig. 7.18.

Simulation programs:

(1) Simulink main program: chap7_4sim.mdl

| chap7_4plant
\/
Sine Wave S-Function2
|-
Mux pll1
—P
Scope1
-
>
Mux P chap7_drbf
N To Workspace 2
S-Function1
H-1 0 -t
Clock To Workspace

(2) S function of RBF: chap7_4rbf.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,

134

[sys,x0,str, tsl=mdlInitializeSizes;
case 3,
sys=mdlOutputs{t,x,u);
case {2, 4, 9}
sys = [1;
otherwise
error (['Unhandled flag = ' ,numZstr (flag)]) ;
end

function [sys,x0,str, ts]=mdlInitializeSizes
sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 0;

sizes.NumOutputs =1;

sizes.NumInputs =2;

sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;

sys=simsizes (sizes);

x0={[1;
str=[];
ts=[1;

function sys=mdlOutputs(t,x,u)
persistentww_lw 2bci

alfa=0.05;
xite=0.5;
if t==
b=1.5;
ci=[-1-0.500.51;
~-10-50510];

w=rands(5,1) ;
w_l=w;w_2=w_1;
end
ut=u(l);
yout=u(2);
xi=[ut yout]';
for j=1:1:5
h(j)=exp (-norm{xi-ci(:,3))"2/(2%b"2)};
end
ymout=w'*h"';

d_w=0*%w;

for j=1:1:5 $0Only weight value update
d_w(j)=xite* (yout-ymout)*h(Jj);

end

7 Neural Networks

7.5 RBF Neural Network Approximation Based on Gradient ... 135

w=w_1+d_w+alfa* (w_1-w_2);

w_2=w_1;w_l=w;

sys (1) =ymout;
(3) Plot program: chap7_d4plot.m

close all;

close all;

figure (1) ;

plot(t,y(:,1),'r' ,£,y(:,2), 'k:', 'linewidth' ,2)
xlabel ('time(s) ') ;ylabel('y and ym') ;

I

legend('ideal signal’, 'signal approximation');

Second example: update w, ¢j, b by gradient descent method

Using RBF neural network to approximate the following discrete plant

= ul(ic)? }’(k—l)
Y0 =l +

Consider a structure 2-5-1 RBF neural network, and we choose x(1) = u(k),
x(2) = y(k), and o = 0.05, 7 = 0.15. The initial weight value is chosen as random
value between 0 and 1. Choose the input as u(k) = sint, t =k x T, T = 0.001, we

-1 —05 0 05 1][

set the initial parameters of Gaussian function as ¢; = {_1 05 0 05 1

b; =3.0,j=1,2,3,4,5.
In the simulation, M = 1 indicates only updating w with fixed ¢j and b and
M =2 indicates updating w, c;, b, the results are shown from Figs. 7.19 and 7.20.
From the simulation test, we can see that better results can be gotten than only

adjusting w by the gradient descent method, especially the initial parameters of
Gaussian function ¢; and b are chosen not suitably.

Simulation program: chap7_5.m

¥RBF approximation
clear all;
close all;

alfa=0.05;
xite=0.15;
x=[0,11";

136

emor

y and ym

-2

0.5

-0.5

-1

7 Neural Networks

T ¥ T

ideal signal
signal approximation

5 7 8 9 10
time(s)

1 1 1 il

5 7 8 9 10
time(s)

Fig. 7.19 RBF neural network approximation by only updating w M = 1)

y and ym

ideal signal
slignal approximation

5
time(s)

T

5
time(s)

Fig. 7.20 RBF neural network approximation by updating w, b, ¢ (M = 2)

10

7.5 RBF Neural Network Approximation Based on Gradient ...

b=3*ones(5,1);

¢c=[-1-0.500.51;
-1-0.500.51];

w=rands (5,1);

w_ l=w;w_2=w_1;
c_l=c;c_2=c_1;
b_l=b;b_2=b_1;
d_w=0%*w;
d_b=0*b;
y_1=0;

ts=0.001;
for k=1:1:10000

time(k)=k*ts;
u(k)=sin(k*ts);

y(k)=u(k)"3+y_1/(1+y_172);

*x(1)=u(k);
x(2)=y_1;

for j=1:1:5

h(j)=exp(-norm(x-c(:,3))"2/(2*b(3)*b(3)));

end
ym(k)=w'*h";
em(k) =y (k) -ym(k) ;

M=1;
if M==1 %Only weight value update
d_w(j)=xite*em(k)*h(5);
elseif M==2 %Update w,b,c
for j=1:1:5
d_w(j)=xite*em(k)*h(3);

d_b(j)=xite*em(k)*w(3)*h(j)*(b(3)"-3) *norm(x~-c(:,3)) 2;

for i=1:1:2

d.c(i, j)=xite*em(k) *w(J)*h(3) * (x(i)-c(i,3)) *(b(3)~-2);

end
end
b=b_1+d_b+alfa*(b_l-b_2);
c=c_1+d_c+alfa*(c_1l-c_2);
end

=w_1+d_w+alfa* (w_1-w_2);

v l=y(k);

138 7 Neural Networks

w_2=w_1;
w_l=w;

c_2=c_1;
c_l=c;

b_2=b_1;

b_1=b;

end

figure (1) ;

subplot (211);

plot(time,y, 'r', time,ym, 'k: ', 'linewidth' ,2);
xlabel ('time(s)');ylabel ('y andym');
legend{('ideal signal’', 'signal approximation')
subplot (212) ;

plot(time,y-ym, 'k', 'linewidth’,2);

xlabel ('time(s) ') ;ylabel('error');

i

7.6 Effects of Analysis on RBF Approximation

We consider approximation of the following discrete plant y(k) = u(k)3 + 1—{—%‘(;—%)7

7.6.1 Effects of Gaussian Function Parameters on RBF
Approximation

In the simulation, we choose a = 0.05, n = 0.3. The initial weight value is chosen
as zeros.

From Gaussian function expression, we know that the effect of Gaussian func-
tion is related to the design of center vector c¢;, width value b;, and the number of
hidden nets. The principle of c; and b; design should be as follows:

(1) Width value b; represents the width of Gaussian function. The bigger value b;
is, the wider Gaussian function is. The width of Gaussian function represents
the covering scope for the network input. The wider the Gaussian function is,
the greater the covering scope of the network for the input is, otherwise worse
covering scope is. Width value ; should be designed moderate.

(2) Center vector ¢; represents the center coordination of Gaussian function for
neural net j. The nearer ¢; is to the input value, the better sensitivity of Gaussian
function is to the input value, otherwise the worse sensitivity is. Center vector ¢;
should be designed moderate.

7.6 Effects of Analysis on RBF Approximation 139

Fig. 7.21 Five Gaussian
membership function

Membership function degree

Input value of Redial Basis Function

(3) The center vector ¢; should be designed within the effective mapping of
Gaussian membership function. For example, the scope of RBF input value is
[~3, +3], and then, the center vector c; should be set in [—3, +3].

In simulation, we should design the center vector ¢j and the width value b;
according to the scope of practical network input value, in other words, the input
value must be within the effective mapping of Gaussian membership function. Five
Gaussian membership functions are shown in Fig. 7.21.

Simulation program:
Five Gaussian membership function design: chap7_6.m
$RBF function

clear all;
close all;

c=[{-3-1.501.53];

M=1;
if M==1
b=0.50*ones (5,1);
elseif M==2
b=1.50*ones (5,1);
end

h=[0,0,0,0,0]";

ts=0.001;
for k=1:1:2000

time(k)=k*ts;

